Published: 1996 Received: November 05, 1993Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J.F. Adams, An example in homotopy theory, Proc. Cambridge Philos. Soc., 53 (1957), 922-923. 2) A.K. Bousfield and D.M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math., 304, 1972. 3) F.R. Cohen, Two primary analogues of Selick's theorem and the Kahn-Priddy theorem for the 3-sphere. Topology, 23 (1984), 401-422. 4) F.R. Cohen, J.C. Moore and J.A. Neisendorfer, Torsions in homotopy groups, Ann. of Math., 109 (1979), 121-168. 5) B. Gray and C.A. McGibbon, Universal phantom maps, Topology, 32 (1993), 371-394. 6) J.R. Harper and J. Roitberg, Phantom maps and spaces of the same n-types for all n, J. Pure Appl. Algebra, 80 (1992), 123-137. 7) C.A. McGibbon, Clones of spaces and maps in homotopy theory, Comment. Math. Helv., 68 (1993), 263-277. 8) C.A. McGibbon, Loop spaces and phantom maps, Contemp. Math., 146 (1993), 297-308. 9) C.A. McGibbon and J.M. M∅ller, On spaces with the same n-type for all n, Topology, 31 (1992), 177-201. 10) C.A. McGibbon and J.M. M∅ller, How can you tell two spaces apart when they have the same n-type for all n?, Proc. J.F. Adams Mem. Symp. London Math. Soc. L.N., 176, Cambridge Univ. Press, 1992, pp. 131-143. 11) W. Meier, Pullback theorems and phantom maps, Quart. J. Math., 29 (1978), 469-481. 12) J.A. Neisendorfer, 3-primary exponents, Math. Proc. Cambridge Philos. Soc., 90 (1981), 63-83. 13) N. Oda and Y. Shitanda, Localization, completion and detecting equivariant maps on skeletons, Manuscripta Math., 65 (1989), 1-18. 14) J. Roitberg, Phantom maps and torsion, to appear in Topology Appl.. 15) J. Roitberg, Computing homotopy classes of phantom maps, preprint. 16) Y. Shitanda, Uncountably many loop spaces of the same n-type for all n, I, Yokohama Math. J., 41 (1993), 17-24. 17) Y. Shitanda, Uncountably many infinite loop spaces of the same n-type for all n, Math. J. Okayama Univ., 34 (1992), 217-223. 18) Y. Shitanda, Phantom maps and monoids of endomorphisms of K(Z, m)×Sn, Publ. Res. Inst. Math. Sci., Kyoto Univ., 29 (1993), 397-409. 19) D. Sullivan, Geometric Topology, Part 1, Localization, Periodicity and Galois symmetry, MIT Notes, 1970. 20) C. Wilkerson, Classification of the same n-type for all n, Proc. Amer. Math. Soc., 60 (1976), 279-285. 21) C. Wilkerson, Applications of minimal simplicial groups, Topology, 15 (1976), 111-130. 22) A. Zabrodsky, p-equivalences and homotopy type, Lecture Notes in Math., 418, Springer, 1974, pp. 160-171. 23) A. Zabrodsky, On phantom maps and a theorem of H. Miller, Israel J. Math., 58 (1987), 129-143.
Right : [1] J. F. Adams, An example in homotopy theory, Proc. Cambridge Philos. Soc., 53 (1957), 922-923. [2] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math., 304, 1972. [3] F. R. Cohen, Two primary analogues of Selick's theorem and the Kahn-Priddy theorem for the 3-sphere. Topology, 23 (1984), 401-422. [4] F. R. Cohen, J. C. Moore and J. A. Neisendorfer, Torsions in homotopy groups, Ann. of Math., 109 (1979), 121-168. [5] B. Gray and C. A. McGibbon, Universal phantom maps, Topology, 32 (1993), 371-394. [6] J. R. Harper and J. Roitberg, Phantom maps and spaces of the same n-types for all n, J. Pure Appl. Algebra, 80 (1992), 123-137. [7] C. A. McGibbon, Clones of spaces and maps in homotopy theory, Comment. Math. Helv., 68 (1993), 263-277. [8] C. A. McGibbon, Loop spaces and phantom maps, Contemp. Math., 146 (1993), 297-308. [9] C. A. McGibbon and J. M. M∅ller, On spaces with the same n-type for all n, Topology, 31 (1992), 177-201. [10] C. A. McGibbon and J. M. M∅ller, How can you tell two spaces apart when they have the same n-type for all n?, Proc. J. F. Adams Mem. Symp. London Math. Soc. L. N., 176, Cambridge Univ. Press, 1992, pp. 131-143. [11] W. Meier, Pullback theorems and phantom maps, Quart. J. Math., 29 (1978), 469-481. [12] J. A. Neisendorfer, 3-primary exponents, Math. Proc. Cambridge Philos. Soc., 90 (1981), 63-83. [13] N. Oda and Y. Shitanda, Localization, completion and detecting equivariant maps on skeletons, Manuscripta Math., 65 (1989), 1-18. [14] J. Roitberg, Phantom maps and torsion, to appear in Topology Appl.. [15] J. Roitberg, Computing homotopy classes of phantom maps, preprint. [16] Y. Shitanda, Uncountably many loop spaces of the same n-type for all n, I, Yokohama Math. J., 41 (1993), 17-24. [17] Y. Shitanda, Uncountably many infinite loop spaces of the same n-type for all n, Math. J. Okayama Univ., 34 (1992), 217-223. [18] Y. Shitanda, Phantom maps and monoids of endomorphisms of K(Z, m)×Sn, Publ. Res. Inst. Math. Sci., Kyoto Univ., 29 (1993), 397-409. [19] D. Sullivan, Geometric Topology, Part 1, Localization, Periodicity and Galois symmetry, MIT Notes, 1970. [20] C. Wilkerson, Classification of the same n-type for all n, Proc. Amer. Math. Soc., 60 (1976), 279-285. [21] C. Wilkerson, Applications of minimal simplicial groups, Topology, 15 (1976), 111-130. [22] A. Zabrodsky, p-equivalences and homotopy type, Lecture Notes in Math., 418, Springer, 1974, pp. 160-171. [23] A. Zabrodsky, On phantom maps and a theorem of H. Miller, Israel J. Math., 58 (1987), 129-143.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -