Published: 1997 Received: May 02, 1995Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) K, Asada and D, Fujiwara, On some oscillatory integral transformations in L2(Rn), Japan. J. Math., 4 (1978), 299-361. 2) R. P. Feynman, Space time approach to non-relativistic quantum mechanics, Rev. Modern Phys., 20 (1948), 367-386. 3) D. Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979), 41-96. 4) D. Fujiwara, Remarks on convergence of some Feynman path integrals, Duke Math. J., 47 (1980), 559-600. 5) D. Fujiwara, A remark on Taniguchi-Kumanogo theorem for product of Fourier integral operators, Pseudo-differential operators, Proc. Oberwolfach 1986, Lecture Notes in Math., 1256, Springer, 1987, pp. 135-153. 6) D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J., 124 (1991), 61-97. 7) D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifold, Lecture Notes in Math., 1540, Springer, 1993, pp. 39-53. 8) D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifold, preprint, January 1993. 9) H. Kitada, On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci. Univ. Tokyo Sec. IA, 27 (1980), 193-226. 10) B. Simon, Trace ideals and their applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge, 1979. 11) T. Tsuchida, Remarks on Fujiwara's stationary phase method on a space of large dimension with a phase function involving electromagnetic fields, Nagoya Math. J., 136 (1994), 157-189. 12) K. Yajima, Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.
Right : [1] K. Asada and D. Fujiwara, On some oscillatory integral transformations in L2(Rn), Japan. J. Math., 4 (1978), 299-361. [2] R. P. Feynman, Space time approach to non-relativistic quantum mechanics, Rev. Modern Phys., 20 (1948), 367-386. [3] D. Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979), 41-96. [4] D. Fujiwara, Remarks on convergence of some Feynman path integrals, Duke Math. J., 47 (1980), 559-600. [5] D. Fujiwara, A remark on Taniguchi-Kumanogo theorem for product of Fourier integral operators, Pseudo-differential operators, Proc. Oberwolfach 1986, Lecture Notes in Math., 1256, Springer, 1987, pp. 135-153. [6] D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J., 124 (1991), 61-97. [7] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifold, Lecture Notes in Math., 1540, Springer, 1993, pp. 39-53. [8] D. Fujiwara, Some Feynman path integrals as oscillatory integrals over a Sobolev manifold, preprint, January 1993. [9] H. Kitada, On a construction of the fundamental solution for Schrödinger equations, J. Fac. Sci. Univ. Tokyo Sec. IA, 27 (1980), 193-226. [10] B. Simon, Trace ideals and their applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge, 1979. [11] T. Tsuchida, Remarks on Fujiwara's stationary phase method on a space of large dimension with a phase function involving electromagnetic fields, Nagoya Math. J., 136 (1994), 157-189. [12] K. Yajima, Schrödinger evolution equations with magnetic fields, J. Analyse Math., 56 (1991), 29-76.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -