Published: 1998 Received: August 31, 1994Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) N. D. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ. Math. J. 30 (1981), 749-785. 2) S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79-96. 3) D. G. Aronson, M. G. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), 1001-1022. 4) M. Bertsch, R. Kersner and L. A. Peletier, Positivity versus localization in degenerate diffusion equations, Nonlinear Anal. 9 (1985), 987-1008. 5) T. Cazenave and P. L. Lions, Solutions globales d'équations de la chaleur semi linéaires, Comm. Partial Differential Equations 9 (1984), 955-978. 6) X. Y. Chen and H. Matano, Convergence, asymptotic periodicity and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations 78 (1989), 160-190. 7) M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations 98 (1992), 226-240. 8) Y. Giga, A bound for global solutions of semilinear heat equations, Comm. Math. Phys. 103 (1986), 415-421. 9) T. Imai and K. Mochizuki, On blow-up of solutions for quasilinear degenerate parabolic equations, Publ. RIMS, Kyoto Univ. 27 (1991), 695-709. 10) D. Kröner and J. F. Rodrigues, Global behaviour for bounded solution of a porous media equation of elliptic-parabolic type, J. Math. Pures Appl. 64 (1985), 105-120. 11) O. A. Ladyzenskaja, V. A. Solonikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, AMS Providence, R. I., 1968. 12) K. Mochizuki and R. Suzuki, Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in RN, J. Math. Soc. Japan 44 (1992), 485-504. 13) O. A. Oleinik, A. S. Kalashnikov and Chzou Yui-Lin, The Cauchy problem and boundary problems for equations of the type of nonlinear filtration, Izv. Akad. Nauk. SSSR Ser. Math. 22 (1958), 667-704, (Russian). 14) W. M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations 54 (1984), 97-120. 15) R. Suzuki, On blow-up sets and asymptotic behavior of interfaces of one dimensional quasilinear degenerate parabolic equations, Publ. RIMS Kyoto Univ. 27 (1991), 375-398.
Right : [1] N. D. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation, Indiana Univ. Math. J. 30 (1981), 749-785. [2] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79-96. [3] D. G. Aronson, M. G. Crandall and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), 1001-1022. [4] M. Bertsch, R. Kersner and L. A. Peletier, Positivity versus localization in degenerate diffusion equations, Nonlinear Anal. 9 (1985), 987-1008. [5] T. Cazenave and P. L. Lions, Solutions globales d'équations de la chaleur semi linéaires, Comm. Partial Differential Equations 9 (1984), 955-978. [6] X. Y. Chen and H. Matano, Convergence, asymptotic periodicity and finite-point blow-up in onedimensional semilinear heat equations, J. Differential Equations 78 (1989), 160-190. [7] M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations 98 (1992), 226-240. [8] Y. Giga, A bound for global solutions of semilinear heat equations, Comm. Math. Phys. 103 (1986), 415-421. [9] T. Imai and K. Mochizuki, On blow-up of solutions for quasilinear degenerate parabolic equations, Publ. RIMS, Kyoto Univ. 27 (1991), 695-709. [10] D. Kröner and J. F. Rodrigues, Global behaviour for bounded solution of a porous media equation of elliptic-parabolic type, J. Math. Pures Appl. 64 (1985), 105-120. [11] O. A. Ladyzenskaja, V. A. Solonikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, AMS Providence, R. I., 1968. [12] K. Mochizuki and R. Suzuki, Blow-up sets and asymptotic behavior of interfaces for quasilinear degenerate parabolic equations in RN, J. Math. Soc. Japan 44 (1992), 485-504. [13] O. A. Oleinik, A. S. Kalashnikov and Chzou Yui-Lin, The Cauchy problem and boundary problems for equations of the type of nonlinear filtration, Izv. Akad. Nauk. SSSR Ser. Math. 22 (1958), 667-704, (Russian). [14] W. M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations 54 (1984), 97-120. [15] R. Suzuki, On blow-up sets and asymptotic behavior of interfaces of one dimensional quasilinear degenerate parabolic equations, Publ. RIMS Kyoto Univ. 27 (1991), 375-398.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -