Published: 1998 Received: September 17, 1996Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: KEYWORDDetails: Right : Nonsingular minimal model, pluricanonical map, birationality
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) Benvemste, X.: Sur les applications pluricanoniques des variétés de type très général en dimension 3, Amer. J. Math. 108 (1986), 433-449. 2) Bombieri, E.: Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Etude. Sci. 42 (1973), 171-219. 3) Chen, M.: An extension of Benveniste-Matsuki's method on 6-canonical maps for threefolds, Comm. in Algebra 22 (1994), 5759-5767. 4) Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326. 5) Kawamata, Y.: Cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603-633. 6) Kawamata, Y.: Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), 57-71. 7) Kollár, J.: Higher direct images of dualizing sheaves I, Ann. of Math. 123 (1986), 11-42. 8) Kollár, J.: Higher direct images of dualizing sheaves II, Ann. of Math. 124 (1986), 171-202. 9) Matsuki, K.: On pluricanonical maps for 3-folds of general type, J. Math. Soc. Japan 38 (1986), 339-359. 10) Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety, In: Algebraic Geometry, Sendai, 1985 (Adv. Stud, in Pure Math. 10, 1987, pp. 449-476).
Right : [1] Benvemste, X.: Sur les applications pluricanoniques des variétés de type très général en dimension 3, Amer. J. Math. 108 (1986), 433-449. [2] Bombieri, E.: Canonical models of surfaces of general type, Publ. Math. Inst. Hautes Etude. Sci. 42 (1973), 171-219. [3] Chen, M.: An extension of Benveniste-Matsuki's method on 6-canonical maps for threefolds, Comm. in Algebra 22 (1994), 5759-5767. [4] Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326. [5] Kawamata, Y.: Cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603-633. [6] Kawamata, Y.: Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), 57-71. [7] Kollár, J.: Higher direct images of dualizing sheaves I, Ann. of Math. 123 (1986), 11-42. [8] Kollár, J.: Higher direct images of dualizing sheaves II, Ann. of Math. 124 (1986), 171-202. [9] Matsuki, K.: On pluricanonical maps for 3-folds of general type, J. Math. Soc. Japan 38 (1986), 339-359. [10] Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety, In: Algebraic Geometry, Sendai, 1985 (Adv. Stud, in Pure Math. 10, 1987, pp. 449-476).
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -