Published: 1998 Received: October 15, 1996Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: KEYWORDDetails: Right : Hankel transform, Lp-spaces, Bochner-Riesz means
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) J. J. Betancor and L. Rodríguez-Mesa, Lipschitz-Hankel spaces and partial Hankel integrals, to appear in Integral Transforms and Special Functions. 2) L. Colzani, A. Crespi, G. Travaglim and M. Vignati, Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in euclidean and noneuclidean spaces, Trans. Amer. Math. Soc., 338 (1) (1993), 43-55. 3) A. Erdelyi, Tables of integral transforms, II, McGraw-Hill, New York, 1953. 4) D. V. Giang and F. Móricz, A new characterization of Besov spaces on the real line, J. Math. Anal. Appl., 189 (1995), 533-551. 5) J. Gosselin and K. Stempak, A weak-type estimate for Fourier-Bessel multipliers, Proc. Amer. Math. Soc., 106 (3) (1989), 655-662. 6) D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375. 7) C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999. 8) P. Heywood and P. G. Rooney, On the inversion of the even and odd Hilbert transforms, Proc. Roy. Soc. Edinburgh, 109A (1988), 201-211. 9) I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math., 8 (1960/61), 307-336. 10) Y. Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc., 103(4) (1988), 1063-1069. 11) K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform, University of Wroclaw, Preprint n°45, 1985. 12) K. Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R. Acad. Sc. Paris, 303 (serie I, n°1) (1986), 15-19. 13) G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1959. 14) G. M. Wing, On the Lp theory of Hankel transforms, Pacific J. Math., 1 (1951), 313-319.
Right : [1] J. J. Betancor and L. Rodríguez-Mesa, Lipschitz-Hankel spaces and partial Hankel integrals, to appear in Integral Transforms and Special Functions. [2] L. Colzani, A. Crespi, G. Travaglim and M. Vignati, Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in euclidean and noneuclidean spaces, Trans. Amer. Math. Soc., 338 (1) (1993), 43-55. [3] A. Erdelyi, Tables of integral transforms, II, McGraw-Hill, New York, 1953. [4] D. V. Giang and F. Móricz, A new characterization of Besov spaces on the real line, J. Math. Anal. Appl., 189 (1995), 533-551. [5] J. Gosselin and K. Stempak, A weak-type estimate for Fourier-Bessel multipliers, Proc. Amer. Math. Soc., 106 (3) (1989), 655-662. [6] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375. [7]C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999. [8] P. Heywood and P. G. Rooney, On the inversion of the even and odd Hilbert transforms, Proc. Roy. Soc. Edinburgh, 109A (1988), 201-211. [9] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math., 8 (1960/61), 307-336. [10] Y. Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc., 103 (4) (1988), 1063-1069. [11] K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform, University of Wroclaw, Preprint n° 45, 1985. [12] K. Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C. R. Acad. Sc. Paris, 303 (serie I, n° 1) (1986), 15-19. [13] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1959. [14] G. M. Wing, On the Lp theory of Hankel transforms, Pacific J. Math., 1 (1951), 313-319.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -