Published: 1998 Received: August 31, 1996Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) A. De Bouard, N. Hayashi and K. Kato, Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Analse non linéaire, 12 (1995), 673-725. 2) H. Chihara, Local existence for the semilinear Schrödinger equations in one space dimension, J. Math. Kyoto Univ., 34 (1994), 353-367. 3) N. Hayashi and K. Kato, Regularity in time of solutions to nonlinear Schrödinger equations, J. Funct. Anal., 128 (1995), 253-277. 4) N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension, Diff: Integral Eqs., 7 (1994), 453-461. 5) K. Kato and K. Taniguchi, Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math., 33 (1996), 863-880. 6) S. Mizohata, On some Schrödinger type equations, Proc. Japan Acad., 57 (1981), 81-84. 7) S. Mizohata, Sur quelques équations du type Schrödinger, Journées “Équations aux Dérivées Partielles”. Soc. Math. France, 1981. 8) J. Takeuchi, On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots, J. Math. Kyoto Univ., 20 (1980), 105-124. 9) J. Takeuchi, Some remarks on my paper “On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots”. J. Math. Kyoto Univ., 24 (1984), 741-754.
Right : [1] A. De Bouard, N. Hayashi and K. Kato, Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Analse non linéaire, 12 (1995), 673-725. [2] H. Chihara, Local existence for the semilinear Schrödinger equations in one space dimension, J. Math. Kyoto Univ., 34 (1994), 353-367. [3] N. Hayashi and K. Kato, Regularity in time of solutions to nonlinear Schrödinger equations, J. Funct. Anal., 128 (1995), 253-277. [4] N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension, Diff. Integral Eqs., 7 (1994), 453-461. [5] K. Kato and K. Taniguchi, Gevrey regularizing effect for nonlinear Schrödinger equations, Osaka J. Math., 33 (1996), 863-880. [6] S. Mizohata, On some Schrödinger type equations, Proc. Japan Acad., 57 (1981), 81-84. [7] S. Mizohata, Sur quelques équations du type Schrödinger, Journées “Équations aux Dérivées Partielles”. Soc. Math. France, 1981. [8] J. Takeuchi, On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots, J. Math. Kyoto Univ., 20 (1980), 105-124. [9] J. Takeuchi, Some remarks on my paper “On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots”, J. Math. Kyoto Univ., 24 (1984), 741-754.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -