Published: 1998 Received: September 25, 1996Available on J-STAGE: October 20, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: October 20, 2006Reason for correction: -Correction: TITLEDetails: Wrong : The first derived limit and compactly Fσ sets Right : The first derived limit and compactly Fσ sets
Date of correction: October 20, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) D. H. Fremlin, Consequences of Martin's axiom, Cambridge University Press, 1984. 2) D. H. Fremlin, Problems, version of 21 April 1994. 3) S. Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic. 3 (1971), 363-394. 4) C. U. Jensen, Les Foncteurs Dérivés de lim et leurs Applications en Théorie des Modules, Lect. Notes in Math. vol. 254 Springer-Verlag, 1972. 5) S. Shelah, Proper Forcing, Lect. Notes in Math. vol. 490 Springer-Verlag, 1982. 6) S. Todorcevic, Partition problems in topology, Cont. Math. Series, vol. 84, Amer. Math. Soc., Providence 1989. 7) M. Bekkali, Topics in set theory, Lect. Notes in Math. vol. 1476 Springer-Verlag 1991. 8) K. Kunen, (κ, λ*) gaps under MA, preprint 1976. 9) S. Mardesic and Prasolov, Strong homology is not additive, Trans. Amer. Math. Soc. 307 (1988), 725-744. 10) A. Dow, P. Simon, and J. E. Vaughan, Strong homology and the proper forcing axiom, Proc. Amer. Math. Soc. 106 (1989), 821-828. 11) A. R. D. Mathias, A. J. Ostaszewski and M. Talagrand, On the existence of an analytic set meeting each compact set in a Borel set, Math. Proc. Camb. Phil. Soc. 84 (1978), 5-10. 12) K. Kunen and A. W. Miller, Borel and projective sets from the point of view of compact sets, Math. Proc. Camb. Phil. Soc. 94 (1983), 399-409. 13) S. Kamo, Almost coinciding families and gaps in _??_(ω), J. Math. Soc. Japan vol. 45. (1993), 357-368. 14) J.-E. Roos, Sur les foncteurs dérivés de lim. Applications., C. R. Acad. Sci. Paris 252 (1961), 3702- 3704. 15) S. Todorcevic and I. Farah, Some applications of the method of forcing, Yenisei, Moscow, 1995. 16) Q. Feng, Homogeneity for open partitions of reals, Trans. Amer. Math. Soc. 339 (1993), 659-684. 17) A.S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995. 18) H. Becker, Analytic sets from the point of view of compact sets, Math. Proc. Camb. Phil. Soc. 99 (1986), 1-4. 19) K. Kuratowski, Topology I, Academic Press, New York 1966.
Right : [1] D. H. Fremlin, Consequences of Martin's axiom, Cambridge University Press, 1984. [2] D. H. Fremlin, Problems, version of 21 April 1994. [3] S. Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic. 3 (1971), 363-394. [4] C. U. Jensen, Les Foncteurs Dérivés de lim et leurs Applications en Théorie des Modules, Lect. Notes in Math. vol. 254 Springer-Verlag, 1972. [5] S. Shelah, Proper Forcing, Lect. Notes in Math. vol. 490 Springer-Verlag, 1982. [6] S. Todorcevic, Partition problems in topology, Cont. Math. Series, vol. 84, Amer. Math. Soc., Providence 1989. [7] M. Bekkali, Topics in set theory, Lect. Notes in Math. vol. 1476 Springer-Verlag 1991. [8] K. Kunen, (κ, λ) gaps under MA, preprint 1976. [9] S. Mardesic and Prasolov, Strong homology is not additive, Trans. Amer. Math. Soc. 307 (1988), 725-744. [10] A. Dow, P. Simon, and J. E. Vaughan, Strong homology and the proper forcing axiom, Proc. Amer. Math. Soc. 106 (1989), 821-828. [11] A. R. D. Mathias, A. J. Ostaszewski and M. Talagrand, On the existence of an analytic set meeting each compact set in a Borel set, Math. Proc. Camb. Phil. Soc. 84 (1978), 5-10. [12] K. Kunen and A. W. Miller, Borel and projective sets from the point of view of compact sets, Math. Proc. Camb. Phil. Soc. 94 (1983), 399-409. [13] S. Kamo, Almost coinciding families and gaps in ℘(ω), J. Math. Soc. Japan vol. 45. (1993), 357-368. [14] J. -E. Roos, Sur les foncteurs dérivés de lim. Applications., C. R. Acad. Sci. Paris 252 (1961), 3702- 3704. [15] S. Todorcevic and I. Farah, Some applications of the method of forcing, Yenisei, Moscow, 1995. [16] Q. Feng, Homogeneity for open partitions of reals, Trans. Amer. Math. Soc. 339 (1993), 659-684. [17] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995. [18] H. Becker, Analytic sets from the point of view of compact sets, Math. Proc. Camb. Phil. Soc. 99 (1986), 1-4. [19] K. Kuratowski, Topology I, Academic Press, New York 1966.
Date of correction: October 20, 2006Reason for correction: -Correction: PDF FILEDetails: -