Abstract
Let A be a Buchsbaum local ring with the maximal ideal \mathfrak{m} and let e(A) denote the multiplicity of A. Let Q be a parameter ideal in A and put I=Q:\mathfrak{m}. Then the equality I2=QI holds true, if e(A)=2 and depth A>0. The assertion is no longer true, unless e(A)=2$. Counterexamples are given.