Published: 1955 Received: December 25, 1953Available on J-STAGE: August 29, 2006Accepted: -
Advance online publication: -
Revised: -
Correction information
Date of correction: August 29, 2006Reason for correction: -Correction: CITATIONDetails: Wrong : 1) L. Carlitz, The number of solutions of some special equations in a finite field, Pacific Journal of Mathematics, vol. 4 (1954), pp. 207-217 2) L. Carlitz, Pairs of quadratic equations in a finite field, American Journal of Mathematics, vol. 76 (1954), pp. 137-154. 3) L. Carlitz, Some special equations in a finite field, Pacific Journal of Mathemtics, vol. 3 (1953), pp. 13-24. 4) H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewißen zyklischen Fällen; Journal für die reine and angewandte Mathematik, vol. 172 (1935), pp. 151-182. 5) E. Jacobsthal, Über die Darstellung der Primzahlen der Form 4n+1 als Summe zweier Quadrate, Journal für die reine und angewandte Mathematik, vol. 132 (1907). pp. 238-245. 6) R. G. Pohrer, On the solution of equations in a finite field, not yet published. 7) A. L. Whiteman. Cyclotomy and Jacobsthal sums, American Journal of Mathematics, vol. 74 (1952), pp. 89-99. 8) A. L. Whiteman, Theorems analogous to Jacobsthal's theorem, Duke Mathematical Journal, vol. 16 (1949), pp. 619-626.
Right : 1) To find the number of solutions of such simultaneous equations in a finite field is also of interest in connection with the algebraic geometry, as was pointed out by A. Weil: Bull. Amer. Math. Soc. 55 (1949) pp. 497-508. [1] L. Carlitz, The number of solutions of some special equations in a finite field, Pacific Journal of Mathematics, vol. 4 (1954), pp. 207-217 [2] L. Carlitz, Pairs of quadratic equations in a finite field, American Journal of Mathematics, vol. 76 (1954), pp. 137-154. [3] L. Carlitz, Some special equations in a finite field, Pacific Journal of Mathemtics, vol. 3 (1953), pp. 13-24. [4] H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewißen zyklischen Fällen, Journal für die reine und angewandte Mathematik, vol. 172 (1935), pp. 151-182. [5] E. Jacobsthal, Über die Darstellung der Primzahlen der Form 4n+1 als Summe zweier Quadrate, Journal für die reine und angewandte Mathematik, vol. 132 (1907). pp. 238-245. [6] R. G. Pohrer, On the solution of equations in a finite field, not yet published. [7] A. L. Whiteman. Cyclotomy and Jacobsthal sums, American Journal of Mathematics, vol. 74 (1952), pp. 89-99. [8] A. L. Whiteman, Theorems analogous to Jacobsthal's theorem, Duke Mathematical Journal, vol. 16 (1949), pp. 619-626.
Date of correction: August 29, 2006Reason for correction: -Correction: PDF FILEDetails: -