Abstract
Mechanical stress-strain hysteresis, temperature and electrical resistance measurements were performed to characterize the fatigue behavior and to calculate the lifetime of metals under constant amplitude loading and random loading. Constant amplitude sequences were periodically inserted in random load tests to measure the plastic strain amplitude as well as the deformation-induced changes in specimen temperature and electrical resistance. These data are plotted versus the number of cycles for the fatigue assessment under random loading, similar as commonly practiced under constant amplitude loading. On the basis of Morrow and Basquin equations in generalized formulations, to be applicable for mechanical, thermal and electrical measurement techniques, a physically based fatigue life calculation method “PHYBAL” was developed. This new short-time procedure requires data of only three fatigue tests for a rapid and nevertheless precise determination of Woehler curves for constant amplitude loading or fatigue life curves for random loading.