Journal of Solid Mechanics and Materials Engineering
Online ISSN : 1880-9871
ISSN-L : 1880-9871
Papers
High Temperature Mechanical Properties of Free-Standing HVOF CoNiCrAlY Coatings by Lateral Compression of Circular Tube
Hiroyuki WAKIKyousuke NAKAMURAItsuki YAMAGUCHIAkira KOBAYASHI
Author information
JOURNAL FREE ACCESS

2008 Volume 2 Issue 8 Pages 1161-1171

Details
Abstract
MCrAlY, M means Co and/or Ni, sprayed coating is used to protect a super alloy substrate from corrosion or oxidation in a gas turbine blade. However, the mechanical properties are not well-known, because there are few proper measurement methods for a thin coating at high temperature. Authors have developed the new easy method to measure the mechanical properties using the lateral compression of a circular tube. The method is useful to apply to a thin coating because it does not need chucking and manufacturing a test piece is very easy. The method is also easily applicable to high temperature measurement. In this study, high temperature mechanical properties, Young's modulus, bending strength and fracture strain, of CoNiCrAlY coatings by HVOF were systematically measured. The results obtained were as follows: Young's modulus and bending strength suddenly decreased beyond 400∼450°C. The Young's modulus and bending strength thermally treated at higher than 1050°C was significantly higher than that of virgin CoNiCrAlY coating. It was found that higher thermal treatment in atmosphere was the most effective in increasing the Young's modulus and bending strength. It was also found that the improvement of Young's modulus was primarily caused by not the effect of TGO but the sintering and diffusion of unfused particles. On the contrary, the fracture strain increased beyond 400°C differently from the bending strength. The fracture strains of CoNiCrAlY thermally treated in vacuum were higher than those of CoNiCrAlY treated in atmosphere. It was found that higher thermal treatment in vacuum was the most effective in increasing the fracture strain.
Content from these authors
© 2008 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top