Host: The Japan Society of Mechanical Engineers
Name : The Ninth International Conference on Modeling and Diagnostics for Advanced Engine Systems (COMODIA 2017)
Date : July 25, 2017 - July 28, 2017
The conversion effects of a three-way catalyst are simulated in previous works using single and multiple representative channel approaches with detailed surface kinetic models. In addition, this article introduces global gas phase chemistry to the model. This allows reflecting ongoing reactions due to incomplete combustion products in low temperature regime. The 1D single-channel model representative for the catalyst is used here. Next to the comparison of the catalyst outlet emissions with and without gas phase chemistry, the transient temperature increase is simulated in order to model the catalysts light off temperature. Additionally, the transient inlet emissions are enhanced to show the influence of water and hydrogen on the modeling results. The heat transfer is modeled by wall heat losses to provide proper heat dissipation out of the catalyst. The modeling results show a good agreement to the experimental data with low computational cost.