Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Articles
Numerical Study on Impacts of Multi-Component Aerosols on Marine Cloud Microphysical Properties
Chunsheng ZHAOYutaka ISHIZAKADayong PENG
Author information
JOURNAL FREE ACCESS

2005 Volume 83 Issue 6 Pages 977-986

Details
Abstract

In this paper impacts of nss-sulfate, sea-salt and organic particles on microphysical properties of marine cloud are investigated, using a mutil-component size-resolving aerosol model. Numerical results show that the number and type of cloud condensation nuclei (CCN) depend on panicle physical and chemical properties (size distribution, chemical composition) of particles, and on environmental conditions (updrafts or supersaturation). Sea-salt particles play a critical role in cloud microphysical processes. Due to its large radius, sea-salt particles are activated into cloud drops in the initial cloud development. Sea-salt activation decreases supersaturation by consuming water vapor and suppresses nss-sulfate activation. Nss-sulfate indirect forcing may be overestimated in some conditions (such as updraft is low), because of the presence of sea-salt particles. Soluble organic components decrease maximum supersaturation, and lead to a decrease of cloud drops activated at the case of a high nss-sulfate and a high updraft velocity. Nss-sulfate CCN account for most variations of the cloud optical depth (COD). Sea-salt increases COD in the case of low nss-sulfate, but decreases COD when nss-sulfate concentration is high. The organic component enhances this influence of sea-salt on COD.

Content from these authors
© 2005 by Meteorological Society of Japan
Previous article Next article
feedback
Top