Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Articles
Relationships between CO2 Flux Estimated by Inverse Analysis and Land Surface Elements in South America and Africa
Kazuo MABUCHIHiroshi TAKAGIShamil MAKSYUTOV
Author information
JOURNALS FREE ACCESS
Supplementary material

2016 Volume 94 Issue 5 Pages 415-430

Details
Abstract

 Inverse analysis estimates the regional flux of greenhouse gases between the earth’s surface and atmosphere using observed atmospheric concentration data that include satellite data. In particular, this method is effective in estimating the flux in regions where observational flux data are limited. However, inverse analysis is basically a mathematical optimization method. Therefore, confirmation of the causal validity of the spatial and temporal changes in the estimated flux is necessary. One confirmation method is validation of the relationship with physical and biological observation data (analysis data) of confirmed accuracy. In this study, the features and validity of changes in the carbon dioxide (CO2) flux estimated by inverse analysis were verified via interrelation analysis, with changes in precipitation, short-wave radiation, surface temperature, and Normalized Difference Vegetation Index (NDVI) in regions of South America and Africa where CO2 flux observation data are limited. Sufficient accuracy of the land surface elements is required for the analysis results to confirm the CO2 flux estimated by inverse analysis. An examination of the correlation of anomalies showed consistent relationships among the precipitation, short-wave radiation, surface temperature, and NDVI data used in this study, which were independently created. The relationships between change in the estimated CO2 flux and characteristic changes in the land surface elements in South America and Africa were consistent for each region. This study confirmed the physical and biological validity of the changes in the CO2 flux estimated by inverse analysis. During the period of this study, the NDVI anomaly was influential in South America and the precipitation (soil wetness) anomaly was an essential factor in Africa for the CO2 flux anomaly. The short-wave radiation anomaly was also influential in both South America and Africa. The distinctive relationships are more clearly detected in the results of inverse analysis using both ground-based CO2 concentration data and the Greenhouse gases Observing SATellite (GOSAT) data than in the results using only ground-based CO2 concentration data. This demonstrates the usefulness of GOSAT data in regions with limited atmospheric CO2 concentration data.

Information related to the author
© 2016 by Meteorological Society of Japan
Previous article Next article
feedback
Top