Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Articles
Simulation of Inverted Charge Structure Formation in Convective Regions of Mesoscale Convective System
Liangtao XUYijun ZHANGFei WANGXi CAO
Author information
JOURNAL FREE ACCESS
Supplementary material

2019 Volume 97 Issue 6 Pages 1119-1135

Details
Abstract

 The charge structure evolution of a mesoscale convective system with an anomalous or inverted charge structure, observed in the Severe Thunderstorm Electrification and Precipitation Study, a field project on the Colorado–Kansas border in summer 2000, is simulated using the Weather Research and Forecasting (WRF) model coupled with electrification and discharge processes. Two noninductive electrification schemes are used, based on the liquid water content (LWC) and the graupel rime accretion rate (RAR). The simulation with the LWC-based electrification scheme cannot reproduce the inverted charge structure with a positive charge region sandwiched by two negative charge layers, while the RAR-based electrification scheme produces the evolution process of a normal–inverted–normal charge structure in the convective region, which is consistent with the observations. In the low RAR (< 2 g m−2 s−1) region, graupel is mainly negatively charged when it bounces off ice crystals, while the ice crystals take up positive charge. However, in the zone where the inverted charge structure forms, a strong updraft (> 16 m s−1), high LWC (> 2 g m−3), and high RAR (> 4.5 g m−2 s−1) region appears above the height of the −20°C layer, so that a positive graupel charging region is generated above the −20°C layer of the convective region, resulting in a negative dipole charge structure with negatively charged ice crystals above the positively charged graupel. The negative dipole is superposed on the positive dipole (positive above negative) charge structure at the lower position to form an inverted tripole charge structure.

Content from these authors
© The Author(s) 2019. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Previous article Next article
feedback
Top