Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Statistical Characteristics of Pre-Summer Rainfall over South China and Associated Synoptic Conditions
Zhenghui LIYali LUOYu DUJohnny C. L. CHAN
Author information
JOURNALS FREE ACCESS Advance online publication

Article ID: 2020-012


 Climatological characteristics of pre-summer (April-to-June) rainfall over Southern China (SC) and associated synoptic conditions are examined using 1980-2017 hourly rainfall observations and reanalysis data. The rainfall amount, frequency, and intensity show pronounced regional variations and substantial changes between pre- and post-monsoon-onset periods. Owing to more favorable thermodynamic conditions after monsoon onset over South China Sea (SCS), rainfall intensifies generally over entire SC irrespective of the rainfall-event durations. Increased magnitudes of rainfall amount in longer-duration (> 6 h) events are found over a designated west-inland region (west of 111°E), which are partially attributed to enhanced dynamic instability. In addition, rainfall events occur more frequently over the west-inland region, as well as coastal regions west side of 118°E, but less over a designated east-inland region. The inland-region rainfall is closely linked to dynamic lifting driven by subtropical synoptic systems (low pressure and an associated front or shearline). The westward extension of the western North Pacific high and the eastward extension/movement of the front or shearline, interacting with the intra-period intensification of the southwesterly monsoonal flows, play important roles in providing high-θe (equivalent potential temperature) air to the west- and east-inland regions, respectively. The warm-sector, coastal rainfall is closely related to the deceleration of the southerly boundary layer (BL) jet (BLJ) over the northern SCS and associated convergence of BL high-θe air near the coast. Meanwhile the southwesterly synoptic-system-related low-level jet in the lower-to-middle troposphere to the south of the inland cold front can contribute to the coastal rainfall occurrence by providing divergence above the BL convergence near the coast. The BLJ often simultaneously strengthens with the lower-troposphere horizontal winds, suggesting a close association between the BLJ and the synoptic systems. The quantitative statistics provided in this study complement previous case studies or qualitative results and thus advance understanding about pre-summer rainfall over SC.

Information related to the author
© The Author(s) 2020. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.