Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

This article has now been updated. Please use the final version.

Possible Roles of the Sea Surface Temperature Warming of the Pacific Meridional Mode and the Indian Ocean Warming on Tropical Cyclone Genesis over the North Pacific for the Super El Niño in 2015
Takahiro ISHIYAMAMasaki SATOHYohei YAMADA
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 2022-040

Details
Abstract

 This study reveals the potential roles of the sea surface temperature (SST) warming associated with the Pacific Meridional Mode (PMM) and the Indian Ocean (IO) warming on tropical cyclone genesis (TCG) in the North Pacific (NP) by focusing on the super El Niño event that occurred in 2015. We used the global non-hydrostatic model to conduct perpetual experiments by integrating for 30 months to obtain a climatological condition of July 2015 and examine sensitivities to SST in the warming region of PMM and IO on TCG over NP. We showed that if SST associated with PMM is warmer, the monsoon trough in the western North Pacific (WNP) and vertical wind shear over the eastern North Pacific (ENP) become weaker, causing reduced TCG in WNP and increased TCG in ENP. We also showed that if SST over IO is warmer, the monsoon trough in WNP becomes weaker, although the vertical wind shear over ENP does not appreciably change. We found that with SST warming associated with PMM or over IO, the anticyclonic anomalies over WNP intensify. We confirmed that if SST is warmer for PMM in the absence of the El Niño forcing, the cyclonic anomalies over WNP intensify as in previous studies. The present results imply a non-linear response for the forcing of the warm SST associated with PMM and El Niño.

Content from these authors
© The Author(s) 2022. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top