Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

This article has now been updated. Please use the final version.

Development of a Line-by-line and a Correlated k-distribution Radiation Models for Planetary Atmospheres
Yoshiyuki O. TAKAHASHIYoshi-Yuki HAYASHIGeorge L. HASHIMOTOKiyoshi KURAMOTOMasaki ISHIWATARI
Author information
JOURNAL OPEN ACCESS Advance online publication
Supplementary material

Article ID: 2023-003

Details
Abstract

 A set of line-by-line and correlated k-distribution radiation models are developed aiming for applications in simulations and examinations of Venus and Mars-like planetary atmospheres. Our line-by-line model is validated by comparing the results with observations and those of previous studies under conditions of Venus, and present and possible early Mars. The radiation fields calculated by our line-by-line model agree well with observed profiles and are within the acceptable range from those presented in previous studies. The results obtained by our line-by-line model are then processed to generate a series of parameters for our correlated k-distribution model. It is confirmed that the radiation fields calculated with those sets of parameters by our correlated k-distribution model sufficiently agree with those by our line-by-line model for the atmospheres with a wide range of surface pressure. By the use of our correlated k-distribution model implemented with those sets of parameters, we evaluate the radiation field for Venus and calculate radiative-convective equilibrium profiles for Venus and Mars. The obtained vertical thermal structures for Venus are qualitatively consistent with observations, and the behaviors of surface pressure and surface temperature for Mars are similar to those reported by previous studies. Those results demonstrate that our models including the procedure for generating tables of radiation parameters are applicable to examine climates of CO2 dominant atmospheres in our solar and exoplanetary systems.

Content from these authors
© The Author(s) 2023. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top