Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Definition of Potential Quantities
S. Syono
Author information
JOURNAL FREE ACCESS

1964 Volume 42 Issue 3 Pages 197-201

Details
Abstract

In order to include the pressure effect in the concentration of any physical quantity, a potential quantity is defined. If A is a number in an appropriate unit in a unit volume of air and ν the volume of air of unit mass and the relation Aν=A0ν0 holds between two states, α=Ap-l000mb=AFx (P, Pd) is defined as a potential A, where P=1000mb. The functional form of Fx(P, Pd) is given to each process of change, α is conservative for the process. According to this definition, we can define various potential quantities, which are conservative for each assigned process.
Potential concentration :ν=n(P/Pd)1/r, where n is the number of particles in a unit volume.
Potential vapor amount : P=ρν(P/Pd)1/r, which is conservative for dry adiabatic change and is equal to ξdo, whereξis mixing ratio.
Potential water content : W=(ρν+∑n (r) m (r)) Fx (P, Pd), where n (r) and m (r) are the number density and the mass of cloud droplet of radius r. If the process is dry adiabatic Fx(P, Pd)≈(P/Pd)1/r and if the process is moist (pseudo adiabatic and adiabatic), Fx (P, Pd)≈(P/Pd)1/rexp[(r-1)r-1LPd-1∑n(r)m(r)], where L is the latent heat of condensation.

Content from these authors
© Meteorological Society of Japan
Previous article Next article
feedback
Top