Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
A General View of the Structure of Typhoon 8514 Observed by Dual-Doppler Radar
From Outer Rainbands to Eyewall Clouds
Akira TabataHitoshi SakakibaraMasahito IshiharaKazuo MatsuuraZenji Yanagisawa
Author information
JOURNAL FREE ACCESS

1992 Volume 70 Issue 5 Pages 897-917

Details
Abstract
The structure of the rainbands and eyewall of Typhoon 8514, which landed at the central region of Japan on 30 August 1985 was observed by two ground-based Doppler radars. The main purpose of the present study is to describe a general view of the structure of the typhoon using data of the dual-Doppler radar.
Although the typhoon was a small and weak typhoon, it retained the characteristics of tropical cyclones: it was accompanied by spiral rainbands (an outer rainband and an inner rainband) and had a warm core in its upper part.
The outer rainband was a spiral band located about 150km from the center of the typhoon. This rainband consisted of continuous stratiform clouds and scattered convective clouds. A radar "bright band" was observed in this rainband. Wind perturbation induced by cooling-by-melting was observed just below the bright band. An updraft of 1.5 ms-1 was produced, mainly owing to the convergence of a southeasterly flow on the inner edge of the outer rainband. This updraft maintained the outer rainband.
The inner rainband was a convective spiral band located ∼60km from the typhoon center. The distribution of reflectivity and vertical velocity of this rainband indicated that an old echo cell existed in the inner part, while young echo cells existed in the outer part of this rainband. An inflow (the airflow toward the typhoon center) was observed in the lower layers of the inner rainband. This inflow reached the inner edge of the young cells, and produced an updraft there. When the depth of this inflow layer became thinner, the inner rainband decayed. This indicates that the inflow had an important role to play in maintaining the inner rainband.
Because the flow into the eyewall of the typhoon in the lower layers was weak, the radius of maximum wind (RMW) was located at the outer side of the axis of reflectivity maxima. The eyewall decayed when it moved to the inner area (nearer the typhoon center) of the RMW, where downdraft was predominant.
Content from these authors
© Meteorological Society of Japan
Previous article Next article
feedback
Top