Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165
Simulated Changes in the Asian Summer Monsoon at Times of Increased Atmospheric CO2
Akio KitohSeiji YukimotoAkira NodaTatsuo Motoi
Author information
JOURNAL FREE ACCESS

1997 Volume 75 Issue 6 Pages 1019-1031

Details
Abstract

Possible changes in the Asian summer monsoon due to increased atmospheric CO2 are investigated by an MRI global coupled atmosphere-ocean general circulation model. The summer (June-August) monsoon rainfall in India increases significantly with global warming. On the other hand, the monsoon wind shear index, defined as the difference between 850hPa and 200hPa zonal winds over the northern Indian Ocean, decreases. At 850hPa, the westerly wind shifts northward and intensifies from the Sahel to northwest of India, but the monsoon westerly over the Arabian Sea weakens. It is found that increased moisture content in the warmer air leads to larger moisture flux convergence, contributing to the increased rainfall. Therefore, the monsoon wind shear index is not a good indicator for identifying any change of monsoon accompanying global warming. In contrast to the increased rainfall in India, change in rainfall is little over China where soil moisture becomes drier at times of increased CO2. It is also noted that the northern Eurasian continent becomes wetter in the increased-CO2 climate.
The magnitude of the interannual variability of the Asian summer monsoon rainfall becomes larger in the CO2 experiment than in the control experiment, particularly in the later stage of the experiment after CO2 doubling. However it should be noted that the interdecadal variation of this interannual variability is also large both in the control and the CO2 experiments.

Content from these authors
© Meteorological Society of Japan
Previous article Next article
feedback
Top