Abstract
【目的】本研究は熱中症救急搬送者数が増加する日最高外気湿球黒球温度(WBGT)を都道府県別に示すことを目的に,より精度の高い熱中症警戒情報の発出基準の策定に資するべく,その指標として熱中症発生確率(Px)を定義して熱中症発生の地域差・時期・年齢差を評価した. 【方法】Pxは日最高外気WBGTを1ºC単位で区分し,当該区分となる全日数に対して人口100万人あたりx人以上の熱中症救急搬送者が発生した日数の比率と定義した.便宜的にPxが50%となるときの日最高外気WBGT(Wx)が人口100万人あたりx人以上の熱中症救急搬送者が発生する閾値と考えることができる.2010~2023年における熱中症救急搬送者数と屋外のWBGT等のデータを用い,x=1, 2, 5, 10の4条件で月別・年齢別にPxを算出した.これらの結果を基に二項ロジスティック回帰分析により,3種類のPxの回帰モデル(全年齢・全期間モデル,全年齢・月別モデル,年齢別・月別モデル)を作成し,陰性的中率,陽性的中率,AUC(Area of Under the Curve)の指標で回帰モデルの妥当性を検証した.最終的に都道府県別にWxを算出し,熱中症発生の地域差を評価した. 【結果】東京都を対象として月別・年齢別にPxを算出し,それぞれ50%以上となるときの日最高外気WBGT を分析すると,9月,6~8月,5月の順,成人,少年,高齢者の順に高くなった.Pxの回帰モデルについては,月別・年齢別モデルではデータの不均衡により陽性的中率が0%となる場合があったものの,全年齢・全期間モデルと全年齢・月別モデルでは得られるWxは妥当性があるとされた.都道府県別のWxについては,比較的寒冷な地域ほどWxが低くなることが明らかとなった. 【結論】PxとWxを用いることで熱中症救急搬送者数が増加するときの日最高外気WBGTについて地域差ならびに時期を考慮できるとともに,高齢者に限れば年齢も考慮可能であることも示された.近年では自治体独自に屋外のWBGTを測定して自動的に警報を発出するシステムを構築している例もあり,本研究の成果はこのような自治体において警報発出基準を定める際に利用できる可能性がある.
Translated Abstract
[Objectives] This study was performed to elucidate the daily maximum WBGT values for each prefecture that correspond to the number of people transported to hospitals for heatstroke and to evaluate regional, seasonal, and age differences in heatstroke occurrence by defining heatstroke occurrence probability (Px). [Methods] Px was defined as the ratio of the number of days when the number of heatstroke emergency transport patients per million people was x or more to the total number of days in the relevant category, which was divided into categories of 1ºC for the daily maximum WBGT. The daily maximum WBGT when Px is 50% (Wx) can be considered as the threshold value for the number of emergency heatstroke transport patients per million people. Px was calculated for each month and age group under the following four conditions: x = 1, 2, 5, and 10. Furthermore, we created three types of regression models for Px using binary logistic regression analysis (an all-ages, all-period model; an all-ages, monthly model; and an age-specific, monthly model) and verified the validity of the regression models using indices of negative predictive value, positive predictive value, and area under the curve. Finally, we evaluated regional differences in heatstroke risk using Wx by prefecture. [Results] When Px for Tokyo was calculated by month or age group, and the daily WBGT maxima were analyzed when they were 50% or higher, the highest maxima were found in the following orders: September>June to August>May; and adults>children>the elderly. When a regression model was created, the positive predictive value of the monthly and age-specific models was sometimes 0% owing to data imbalance; however, the Wx obtained from the all-age, all-period model and the all-age, monthly model was considered valid. Finally, when Wx was evaluated by prefecture, Wx was clearly lower in relatively cold regions. [Conclusion] Px and Wx values revealed that regional differences and seasonal variations in daily maximum WBGT should be taken into account during heatstroke emergency transport, and age should also be taken into account if analysis is limited to the elderly. In recent years, some local governments have built systems that automatically issue warnings based on WBGT measurements. The results of this study may be useful for local governments when setting warning criteria.
References
- [1] WMO . Global climate indicators. In: State of the global climate 2023. 2024. p.3-10.
- [2] Intergovernmental Panel on Climate Change. A. Current status and trends. In: Climate change 2023 Synthesis Report. 2023. p.4-11.
- [3] British Columbia. Extreme heat and human mortality: A review of heat-related deaths in B.C. in Summer 2021. 2022
- [4] Ballester J, Quijal-Zamorano M, Turrubiates RFM, Pegenaute F, Herrmann FR, Robine JM, et al. Heat-related mortality in Europe during the summer of 2022. Nat Med. 2023;29(7):1857-1866. doi: 10.1038/s41591-023-02419-z
- [5] 総務省消防庁.熱中症情報,救急搬送状況. Fire and Disaster Management Agency. [Necchusho joho, kyukyu hanso joho.] https://www.fdma.go.jp/disaster/heatstroke/post3.html (in Japanese) (accessed 2024-11-15).
- [6] Ebi KL, Teisberg TJ, Kalkstein LS, Robinson L, Weiher RF. Heat watch / Warning systems sabe life, estimated costs and benefits for Philadelphia 1995-98. American Meteorological Society. 2004;85(8):1067-1074. doi: 10.1175/BAMS-85-8-1067
- [7] Casanueva A, Burgstall A, Kotlarski S, Messeri A, Morabito M, Flouris AD, et al. Overview of existing heat-health warning systems in Europe. 2019;16(15):1-22. doi: 10.3390/ijerph16152657
- [8] Ebi KL, Schmier JK. A stitch in time: improving public health early warning systems for extreme weather events. Epidemiologic Reviews. 2005;27:115-121. doi: 10.1093/epirev/mxi006
- [9] Toloo G, FitzGerald G, Aitken P, Verrall K, Tong S. Are heat warning systems effective?. Environmental Health. 2013;12(27):1-4. doi: 10.1186/1476-069X-12-27
- [10] 環境省.熱中症予防サイト,熱中症警戒情報とは. Ministry of the Environment. [Necchusho yobo site, Necchusho keikai joho towa]. https://www.wbgt.env.go.jp/about_alert.php (in Japanese) (accessed 2025-01-14)
- [11] 環境省.熱中症予防サイト,熱中症特別警戒情報とは. Ministry of the Environment. [Necchusho yobo site, Necchusho tokubetsu keikai joho towa]. https://www.wbgt.env.go.jp/about_alert.php (in Japanese) (accessed 2025-01-14)
- [12] Health Canada. 3.4 Developing an alert protocol. In: Heat alert and response systems to protect health: Best practices guidebook. 2012. p.23-31.
- [13] 環境省.熱中症予防サイト,熱中症警戒アラートの発表履歴.2023.Ministry of the Environment. [Necchusho yobo saito, Necchusho keikai alert no happyo rireki 2023.] https://www.wbgt.env.go.jp/alert_record_2023.php (in Japanese) (accessed 2025-01-14)
- [14] 国立環境研究所.熱中症予防情報,熱中症発生数(救急搬送).National Institute of Environmental Studies. [Necchusho yobo joho, Necchusho hasseisu (kyukyu hanso)] https://nies.maps.arcgis.com/apps/instant/portfolio/index.html?appid=b3bae4b7be9b46e6bd53f19788869831 (in Japanese) (accessed 2025-01-14)
- [15] 星秋夫,中井誠一,金田英子,山本亨,稲葉裕.我が国における熱中症死亡の地域差.日生気誌. 2010;47(4):175-184. Hoshi A, Nakai S, Kaneda E, Yamamoto T, Inaba Y. [Regional characteristics in the death due to heat disorders in Japan.] Jpn J Biometeor. 2010;47(4):175-184. doi: 10.11227/seikisho.47.175
- [16] 松本太.東京都における高齢者の熱中症発生に関する地域的特徴.日生気誌. 2022;59(3,4):67-77. Matsumoto F. [Regional characteristics of the incidence of heat disorders among the elderly in Tokyo.] Jpn J Biometeor. 2022;59(3,4):67-77. doi:10.11227/seikisho.59.67
- [17] 赤塚慎,宇野忠,堀内雅弘.山梨県における熱中症発生の地域特性.日生気誌. 2014;51(1):23-36. Akatsuka S, Uno T, Horiuchi M. [Regional characteristics of heat disorder incidence in Yamanashi prefecture.] Jpn. J. Biometeor. 2014;51(1):23-36. doi: 10.11227/seikisho.51.23
- [18] 入來正躬,橋本眞明.熱中症発症の地域差-山梨県と北海道の比較から-.日生気誌.2006;43(1):23-33. Iriki M, Hashimoto M. [Regional difference in the incidence characteristics of heat disorder: Yamanashi and Hokkaido.] Jpn J Biometeor. 2006;43(1):23-33. doi: 10.11227/seikisho.43.23
- [19] Lien T, Tabata T. Regional incidence risk of heat stroke in elderly individuals considering population, household structure, and local industrial sector. Science of The Total Environment. 2022;(853):158548. doi: 10.1016/j.scitotenv.2022.158548
- [20] Saha S, Brock JW, Vaidyanathan A, Easterling DR, Luber G. Spatial variation in hyperthermia emergency department visits among those with employer-based insurance in the United States: a case-crossover analysis. Environ Health. 2015;14(20):1-9. doi: 10.1186/s12940-015-0005-z
- [21] Grundstein AJ, Hosokawa Y, Casa DJ. Fatal exertional heat stroke and American football players: The need for regional heat-safety guidelines. Injury Prevention and Risk Factor Screening. 2018:53(1):43-50. doi: 10.4085/1062-6050-445-16
- [22] Sheridan S, Kalkstein A. Seasonal variability in heat-related mortality across the United States. Natural Hazards. 2010;55:291-305. 10.1007/s11069-010-9526-5
- [23] 星秋夫,稲葉裕.暑熱障害発生における高齢者の特徴-新聞記事の事例から-.日本歯科大学紀要.2005;35:69-74. Hoshi A, Inaba Y. [Characterstics of heat disorders in old men, in cases of news paper reports.] Nihon Shika Daigaku Kiyo. 2006;35:69-74. doi: 10.14983/00000618
- [24] 環境省.熱中症予防サイト,全国の暑さ指数 (WBGT). Ministry of the Environment. [Necchusho yobo site, zenkoku no atsusa shisu (WBGT)]. https://www.wbgt.env.go.jp/record_data.php (in Japanese) (accessed 2024-07-17)
- [25] 総務省統計局.住民基本台帳に基づく人口,人口動態及び世帯数調査. Statistics Bureau of Japan. [Jumin kihon daicho ni motozuku jinko, jinko dotai oyobi setaisu chosa]. https://www.e-stat.go.jp/statistics/00200241 (in Japanese) (accessed 2024-07-17)
- [26] 国土交通省.地域区分新旧表. Ministry of Land, Infrastructure, Transport and Tourism. [Chiiki kubun shinkyuhyo]. https://www.mlit.go.jp/jutakukentiku/shoenehou_assets/img/library/chiikikubun-sinkyuu.pdf (in Japanese)(accessed 2025-01-14)
- [27] Ueno S, Hayano D, Noguchi E, Aruga T. Investigating age and regional effects on the relation between the incidence of heatrelated ambulance transport and daily maximum temperature or WBGT. Environmental Health and Preventive Medicine. 2021;26(116):1-14. doi: 10.1186/s12199-021-01034-z
- [28] 小野雅司,登内道彦.通常観測気象要素を用いた WBGT(湿球黒球温度)の推定. 日生気誌.2014;50(4):147-157. Ono M, Tonouchi M. Estimation of wet-bulb globe temperature using generally measured meteorological indices. Jpn J Biometeor. 2014;50(4):147-157. doi: 10.11227/seikisho.50.147 (in Japanese)
- [29] Martinez GS, Imai C, Masumo K. Local heat stroke prevention plans in Japan: characteristics and elements for public health adaptation to climate change. Int J Environ Res Public Health. 2011;8(12):4563-4581. doi: 10.3390/ijerph8124563
- [30] 総務省統計局.各年10月1日現在人口. Statistics Bureau of Japan. [Kakunen 10 gatsu 1 nichi genzai jinko.] https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200524&tstat=000000090001&cycle=7&tclass1=000001011679&cycle_facet=tclass1&tclass2val=0 (in Japanese)(accessed 2024-11-22)
- [31] 東京都の統計.住民基本台帳による東京都の世帯と人口.Statistics of Tokyo. [Jumin kihon daicho ni yoru tokyoto no setai to jinko.] https://www.toukei.metro.tokyo.lg.jp/juukiy/jy-index.htm (accessed 2024-12-03)