2022 Volume 29 Issue 3 Pages 835-853
This paper proposes a new abstractive summarization model for documents, hierarchical BART (Hie-BART), which captures the hierarchical structures of documents (i.e., their sentence-word structures) in the BART model. Although the existing BART model has achieved state-of-the-art performance on document summarization tasks, it does not account for interactions between sentence-level and word-level information. In machine translation tasks, the performance of neural machine translation models can be improved with the incorporation of multi-granularity self-attention (MG-SA), which captures relationships between words and phrases. Inspired by previous work, the proposed Hie-BART model incorporates MG-SA into the encoder of the BART model for capturing sentence-word structures. As for the improvement of summarization performance by the proposed method, the evaluation using the CNN/Daily Mail dataset shows an improvement of 0.1 points on ROUGE-L.