Journal of Natural Language Processing
Online ISSN : 2185-8314
Print ISSN : 1340-7619
ISSN-L : 1340-7619
General Paper (Peer-Reviewed)
LATTE: Lattice ATTentive Encoding for Character-based Word Segmentation
Thodsaporn Chay-intrHidetaka KamigaitoKotaro FunakoshiManabu Okumura
Author information
JOURNAL FREE ACCESS

2023 Volume 30 Issue 2 Pages 456-488

Details
Abstract

A character sequence comprises at least one or more segmentation alternatives. This can be considered segmentation ambiguity and may weaken segmentation performance in word segmentation. Proper handling of such ambiguity lessens ambiguous decisions on word boundaries. Previous works have achieved remarkable segmentation performance and alleviated the ambiguity problem by incorporating the lattice, owing to its ability to capture segmentation alternatives, along with graph-based and pre-trained models. However, multiple granularity information, including character and word, in a lattice that encodes with such models may not be attentively exploited. To strengthen multi-granularity representations in a lattice, we propose the Lattice ATTentive Encoding (LATTE) method for character-based word segmentation. Our model employs the lattice structure to handle segmentation alternatives and utilizes graph neural networks along with an attention mechanism to attentively extract multi-granularity representation from the lattice for complementing character representations. Our experimental results demonstrated improvements in segmentation performance on the BCCWJ, CTB6, and BEST2010 datasets in three languages, particularly Japanese, Chinese, and Thai.

Content from these authors
© 2023 The Association for Natural Language Processing
Previous article Next article
feedback
Top