Journal of Nuclear Fuel Cycle and Environment
Online ISSN : 2186-7135
Print ISSN : 1884-7579
ISSN-L : 1343-4446
Research Article
Effect of Direct Contact with Iron on Gas Evolution Behavior of Aluminum
Shuji HashizumeJunko MatsumotoTsunetaka Banba
Author information
JOURNAL FREE ACCESS

1998 Volume 5 Issue 1 Pages 45-49

Details
Abstract
  Dry Low-Level Radioactive Waste(LLW), incombustible solid LLW, generated from nuclear power stations is planed to be solidified with cement backfill in drums. The solidified dry LLW will be buried to shallow underground at Rokkasyo LLW Disposal Center. It is well known that corrosion of aluminum and hydrogen gas evolution occur in high pH environments such as mortar. Gas evolution from aluminum is likely to affect the leachability of solidified dry LLW with mortar. Though aluminum removal from dry LLW is planed, a small amount of aluminum will be actually included in dry LLW. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized in our previous study. It was also found that 1.5 mole hydrogen gas evolves while 1 mole aluminum corrodes under 60°C. Actually aluminum in drums is likely to contact with carbon steel of which main element is iron. The gas evolution behavior of aluminum is expected to be affected by its direct contact with iron. Therefore, effect of direct contact with iron on gas evolution behavior of aluminum was studied. The corrosion rate of aluminum increased by contacting it with iron in simulating mortar environments. The amount of gas evolution from aluminum was reduced by contacting with iron. The reduction in gas evolution was considered to result from the change of cathode reaction from hydrogen evolution to oxygen reduction. When aluminum contacts with iron, the corrosion and gas evolution behavior of aluminum is significantly affected oxygen in environment.
Content from these authors
© 1998 Division of Nuclear Fuel Cycle and Environment, Atomic Energy Society of Japan
Previous article Next article
feedback
Top