Abstract
Radionuclide migration experiments in quarried blocks of granite under in-situ conditions at the 240-m level in AECL's Underground Research Laboratory (URL) were performed under a five-year cooperative research program between Japan Atomic Energy Research Institute (JAERI, reorganized to Japan Atomic Energy Agency, JAEA) and Atomic Energy of Canada Ltd. (AECL). Migration experiments with Br, 3H, 85Sr, 237Np, 238Pu, 95mTc and synthetic colloids, and post-experimental alpha and gamma scanning of the fracture surfaces were performed using 1 m3 granite blocks, containing a single fracture, excavated from a water-bearing fracture zone. The transport of the radionuclides was affected by macroscopic mechanical dispersion, matrix diffusion and element-specific sorption on fracture surfaces. Colloid transport exhibited a complicated process that may include sedimentation and diffusion into stagnant zones.