Abstract
The dynamic characteristics of control rod for boiling water reactor being inserted under seismic excitation were investigated using non-linear analytical models. The capability of managing the insertion of control rod is one of the most important factors affecting the safety of nuclear power plant undergoing seismic events. Predicting the behavior of control rod being inserted during earthquakes is important when designing how rod should be controlled during seismic events. We developed analytical models using the finite element method (FEM). The effect of the interaction force between the control rod and the fuel assemblies is considered in non-linear analysis. This interaction force causes resistance force to be applied to the control rod when they are being inserted. The validity of the analytical models was confirmed by comparing the analytical results with the experimental ones. The effects of input seismic motion and structural parameters on the insertion time ware investigated using the analytical models. These analytical methods can be used to predict the time to insert the control rod into the core region of reactor, and are useful for designing control rod system that can survive seismic events.