Abstract
A sailing-type wind farm which can move freely on oceans has been proposed in Japan since 2003. In this system the wind power is turned into hydrogen using an electrolyzer and then transported to end users. Since the sailing-type wind farm is a stand-alone system and the wind is intermittent, the efficiency of hydrogen production is quite low when the electrolyzer power is below a certain value. Additionally, the electrolyzer is inevitably shutdown frequently for lack of power. The frequent electrolyzer start-up actions can also decrease the efficiency of hydrogen production and shorten the electrolyzer's lifetime. In this paper, we applied a rechargeable battery and a proper control algorithm to the system to guarantee the hydrogen production efficiency and reduce the electrolyzer's start-up times. A simulation model of the whole system was developed and wind data was used to test the validity of the method. The simulation results showed that the proposed method can effectively improve the hydrogen productivity and reduce the start-up times.