Journal of Pharmacological Sciences
Online ISSN : 1347-8648
Print ISSN : 1347-8613
ISSN-L : 1347-8613
Full Papers
Inhibition by Selenium Compounds of Catecholamine Secretion Due to Inhibition of Ca2+ Influx in Cultured Bovine Adrenal Chromaffin Cells
Yasuhito UezonoYumiko ToyohiraNobuyuki YanagiharaAkihiko WadaKohtaro Taniyama
Author information
JOURNAL FREE ACCESS

2006 Volume 101 Issue 3 Pages 223-229

Details
Abstract
Selenium is an essential trace metal element, whereas large doses of selenium exert adverse effects to the human body. We examined the effects of selenium compounds, sodium selenite (Na2SeO3) and sodium selenate (Na2SeO4), on catecholamine secretion from cultured bovine adrenal chromaffin cells. Treatment of chromaffin cells with sodium selenite for 72, 48, and 24 h caused decreases in protein and catecholamine contents, in association with cell damage, at concentrations over 30, 300, and 300 μM, respectively. The cells treated with subtoxic conditions (<100 μM, 48 h) of sodium selenite were used for further experiments. Sodium selenite treatment for 48 h inhibited carbachol (CCh)-induced catecholamine secretion in a concentration-dependent and non-competitive manner, while it did not affect high K+- and veratridine-induced catecholamine secretion. Sodium selenite (100 μM) did not affect CCh- and veratridine-induced 22Na+ influx, while the compound inhibited 45Ca2+ influx induced only by CCh, but not high K+ and veratridine. Sodium selenate even at higher concentrations (1000 μM) did not affect any stimulus-induced catecholamine secretion and 45Ca2+ influx. Thus, sodium selenite may specifically exert adverse effects, such as inhibition of physiological stimulus-induced catecholamine secretion from adrenal chromaffin cells due to inhibition of Ca2+ influx.
Content from these authors
© The Japanese Pharmacological Society 2006
Previous article Next article
feedback
Top