Journal of Pharmacological Sciences
Online ISSN : 1347-8648
Print ISSN : 1347-8613
ISSN-L : 1347-8613
Forum Minireview
Basic and Clinical Aspects of Non-neuronal Acetylcholine:
Expression of an Independent, Non-neuronal Cholinergic System in Lymphocytes and Its Clinical Significance in Immunotherapy
Takeshi FujiiYuki Takada-TakatoriKoichiro Kawashima
Author information
JOURNAL FREE ACCESS

2008 Volume 106 Issue 2 Pages 186-192

Details
Abstract

Lymphocytes possess all the components required to constitute an independent, non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). ACh modifies T and B cell function via both mAChR- and nAChR-mediated pathways. Stimulation of lymphocytes with the T cell activator phytohemagglutinin, protein kinase C activator phorbol ester, or cell surface molecules enhances the synthesis and release of ACh and up-regulates ChAT and/or M5 mAChR gene expression. Furthermore, animal models of immune disorders exhibit abnormal lymphocytic cholinergic activity. The cholesterol-lowering drug simvastatin attenuates the lymphocytic cholinergic activity of T cells by inhibiting LFA-1 signaling in a manner independent of its cholesterol-lowering activity. This suggests that simvastatin exerts its immunosuppressive effects in part by modifying lymphocytic cholinergic activity. Nicotine, an active ingredient of tobacco, ameliorates ulcerative colitis but exacerbates Crohn’s disease. Expression of mRNAs encoding the nAChR α7 and α5 subunits are significantly diminished in peripheral mononuclear leukocytes from smokers, as compared with those from nonsmokers. In addition, long-term exposure of lymphocytes to nicotine reduces intracellular Ca2+ signaling via α7 nAChR–mediated pathways. In fact, studies of humoral antibody production in M1/M5 mAChR–deficient and α7 nAChR–deficient animals revealed the role of lymphocytic cholinergic activity in the regulation of immune function. These results provide clues to understanding the mechanisms underlying immune system regulation and could serve as the basis for the development of new immunomodulatory drugs.

Content from these authors
© The Japanese Pharmacological Society 2008
Previous article Next article
feedback
Top