Journal of Pharmacological Sciences
Online ISSN : 1347-8648
Print ISSN : 1347-8613
ISSN-L : 1347-8613
Full Papers
Nitric Oxide Inhibits Lipopolysaccharide-Induced Inducible Nitric Oxide Synthase Expression and Its Own Production Through the cGMP Signaling Pathway in Murine Microglia BV-2 Cells
Yasuhiro YoshiokaNobuo TakedaAkiko YamamuroAtsushi KasaiSadaaki Maeda
Author information
JOURNAL FREE ACCESS

2010 Volume 113 Issue 2 Pages 153-160

Details
Abstract

The present study examined the effect of the nitric oxide (NO) donor NOC18 on lipopolysaccharide (LPS)-induced NO production to investigate a regulation mechanism of NO production by microglial cells. LPS increased the levels of NO and inducible NO synthase (iNOS) protein in BV-2 murine microglial cells in a concentration-dependent manner. Pretreatment with NOC18 for 24 h concentration-dependently attenuated the LPS-induced iNOS protein expression and NO production. The inhibitory effect of NOC18 on LPS-induced NO production was partially blocked by LY83583, a soluble guanylate cyclase inhibitor. Pretreatment with dibutyryl guanosine-3′,5′-cyclic monophosphate (DBcGMP), a cell-permeable cGMP analogue, for 24 h attenuated partially LPS-induced iNOS protein expression and NO production. Furthermore, the effects of LPS on iNOS and NO production were inhibited by the c-Jun N-terminal kinase (JNK) inhibitor SP600125, and LPS-induced phosphorylation of JNK and c-Jun was inhibited by NOC18 and DBcGMP. These results suggest that NO production by microglial cells is controlled by a negative feedback mechanism via the NO/cGMP signaling pathway.

Content from these authors
© The Japanese Pharmacological Society 2010
Previous article Next article
feedback
Top