Journal of Pharmacological Sciences
Online ISSN : 1347-8648
Print ISSN : 1347-8613
ISSN-L : 1347-8613
Full Papers
Utilization of Human Liver Microsomes to Explain Individual Differences in Paclitaxel Metabolism by CYP2C8 and CYP3A4
Ryoko TaniguchiToshio KumaiNaoki MatsumotoMinoru WatanabeKoji KamioSatoshi SuzukiShinichi Kobayashi
Author information

2005 Volume 97 Issue 1 Pages 83-90


Paclitaxel is widely used for treatment of malignant tumors. Paclitaxel is metabolized by CYP2C8 and CYP3A4, and these enzymes are known to differ between individuals, although the details have not been clarified. Recent progress in pharmacogenetics has shown that genetic polymorphisms of metabolic enzymes are related to these individual differences. We investigated the effect of the polymorphisms on paclitaxel metabolism by analyzing metabolic activities of CYP2C8 and CYP3A4 and expressions of mRNA and protein. Production of 6α-hydroxypaclitaxel, a metabolite of CYP2C8, was 2.3-fold larger than 3'-p-hydroxypaclitaxel, a metabolite of CYP3A4. Significant inter-individual differences between these two enzyme activities were shown. The expressions of mRNA and protein levels correlated well with the enzyme activities, especially with CYP3A4. Although it was previously reported that CYP2C8*3 showed lower activity than the wild type, two subjects that had the CYP2C8*3 allele did not show lower activities in our study. Inter-individual differences in paclitaxel metabolism may be related to CYP2C8 and CYP3A4 mRNA expression. CYP2C8 is the primary metabolic pathway of paclitaxel, but there is a “shifting phenomenon” in the metabolic pathway of paclitaxel in the liver of some human subjects.

Content from these authors
© The Japanese Pharmacological Society 2005
Previous article Next article