Journal of Pharmacological Sciences
Online ISSN : 1347-8648
Print ISSN : 1347-8613
ISSN-L : 1347-8613

This article has now been updated. Please use the final version.

Platinum Nanoparticles Suppress Osteoclastogenesis Through Scavenging of Reactive Oxygen Species Produced in RAW264.7 Cells
Mayumi NomuraYoshitaka YoshimuraTakashi KikuiriTomokazu HasegawaYumi TaniguchiYoshiaki DeyamaKen-ichi KoshiroHidehiko SanoKuniaki SuzukiNobuo Inoue
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 11099FP

Details
Abstract
Recent research has shown that platinum nanoparticles (nano-Pt) efficiently quench reactive oxygen species (ROS) as a reducing catalyst. ROS have been suggested to regulate receptor activator of NF-κB ligand (RANKL)-stimulated osteoclast differentiation. In the present study, we examined the direct effects of platinum nano-Pt on RANKL-induced osteoclast differentiation of murine pre-osteoclastic RAW 264.7 cells. The effect of the nano-Pt on the number of osteoclasts was measured and their effect on the mRNA expression for osteoclast differentiation was assayed using real-time PCR. Nano-Pt appeared to have a ROS-scavenging activity. Nano-Pt decreased the number of osteoclasts (2+ nuclei) and large osteoclasts (8+ nuclei) in a dose-dependent manner without affecting cell viability. In addition, this agent significantly blocked RANKL-induced mRNA expression of osteoclastic differentiation genes such as c-fms, NFATc1, NFATc2, and DC-STAMP as well as that of osteoclast-specific marker genes including MMP-9, Cath-K, CLC7, ATP6i, CTR, and TRAP. Although nano-Pt attenuated expression of the ROS-producing NOX-family oxidases, Nox1 and Nox4, they up-regulated expression of Nox2, the major Nox enzyme in macrophages. These findings suggest that the nano-Pt inhibit RANKL-stimulated osteoclast differentiation via their ROS scavenging property. The use of nano-Pt as scavengers of ROS that is generated by RANKL may be a novel and innovative therapy for bone diseases.
Content from these authors
© The Japanese Pharmacological Society 2011
feedback
Top