Abstract
The structure formation of a single polymer chain in solution with explicit solvent molecules is investigated by molecular dynamics simulation. The orientationally ordered structure is formed at a low temperature by quenching from a random conformation at a high temperature. The growth of the global and local orientational order proceeds in a stepwise manner at T≥350 K, whereas it proceeds in a gradual manner at T=300 K. From the detailed analyses of the parallel ordering process, it is found that a conformational change of the polymer chain occurs at first, and then parallel ordering starts to take place. In comparison with the simulation results of an isolated polymer chain in vacuum, it is ascertained that the stem length of the orientationally ordered structure formed in solution becomes 2–3 times longer than that formed in vacuum.