Journal of the Physical Society of Japan
Online ISSN : 1347-4073
Print ISSN : 0031-9015
ISSN-L : 0031-9015
Gaussian-Basis Monte Carlo Method for Numerical Study on Ground States of Itinerant and Strongly Correlated Electron Systems
Takeshi AimiMasatoshi Imada
Author information
JOURNAL RESTRICTED ACCESS

2007 Volume 76 Issue 8 Pages 084709

Details
Abstract

We examine Gaussian-basis Monte Carlo (GBMC) method introduced by Corney and Drummond. This method is based on an expansion of the density-matrix operator \\hatρ by means of the coherent Gaussian-type operator basis \\hatΛ and does not suffer from the minus sign problem. The original method, however, often fails in reproducing the true ground state and causes systematic errors of calculated physical quantities because the samples are often trapped in some metastable or symmetry broken states. To overcome this difficulty, we combine the quantum-number projection scheme proposed by Assaad, Werner, Corboz, Gull, and Troyer in conjunction with the importance sampling of the original GBMC method. This improvement allows us to carry out the importance sampling in the quantum-number-projected phase-space. Some comparisons with the previous quantum-number projection scheme indicate that, in our method, the convergence with the ground state is accelerated, which makes it possible to extend the applicability and widen the range of tractable parameters in the GBMC method. The present scheme offers an efficient practical way of computation for strongly correlated electron systems beyond the range of system sizes, interaction strengths and lattice structures tractable by other computational methods such as the quantum Monte Carlo method.

Content from these authors

This article cannot obtain the latest cited-by information.

© The Physical Society of Japan 2007
Previous article Next article
feedback
Top