Abstract
The problem of coexistence of the local and band aspects in the fundamental absorption spectra (or the impurity-induced infrared absorption of lattice vibrations) is formulated with the use of the Green’s function method. By a suitable decomposition of the hamiltonian of the electron-hole relative motion (or the dynamical matrix for the lattice vibrations), one can derive a line shape expression in which coexist the both aspects, namely, the metastable excitons (or the quasi-local modes) on the one hand and the Van Hove singularities on the other hand. Their interference results in the antiresonance of the quasi-local states and the metamorphism of Van Hove singularities.