Journal of the Physical Society of Japan
Online ISSN : 1347-4073
Print ISSN : 0031-9015
ISSN-L : 0031-9015
Molecular Dynamics Study of the Structure of a Rapidly Quenched Metal
Minoru Tanaka
Author information
JOURNAL RESTRICTED ACCESS

1982 Volume 51 Issue 12 Pages 3802-3809

Details
Abstract

The molecular dynamics method is used to simulate the rapid-quenching process of a simple liquid metal. The model consists of 864 particles with the density-dependent effective pair potential, which can describe the structure of liquid rubidium above the melting point. The rapid-quenching process from just above the melting point of rubidium down to around 4.2 K is simulated by subtracting the kinetic energy of particles intermittently with the quenching rate of 4.5×1012 Ks−1. In the final quenched state at 4.5 K both the pair distribution function and the structure factor show a feature of amorphous states, that is, the split second peak. The relative positions and the ratio of the heights of these split subpeaks are very close to those of the quenched argon (the molecular dynamics simulation) and also of amorphous iron (the evaporated film), and the final quenched state can be considered as a typical model of amorphous pure metals.

Content from these authors

This article cannot obtain the latest cited-by information.

© THE PHYSICAL SOCIETY OF JAPAN
Previous article Next article
feedback
Top