A test system is assumed to interact with a heat bath consisting of harmonic oscillators or an equivalent bath with a proper frequency spectrum producing a Gaussian-Markoffian random perturbation. The effect of reaction of the test system to the bath is considered in the high temperature approximation. Elimination of the bath using the influence functional method of Feynman and Vernon yields a continuous fraction expression for the reduced density matrix of the test system. The result affords a basis to clarify the relationship between the stochastic and the dynamical approaches to treat the problem of partial destruction of quantum coherence of a system interacting with its environment.
References (16)
Related articles (0)
Figures (0)
Content from these authors
Supplementary material (0)
Result List ()
Cited by
This article cannot obtain the latest cited-by information.