Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular papers
Simulated and Experimental Comparisons of Slip and Torque Control Strategies for Regenerative Braking in Instances of Parametric Uncertainties
Maxime BoisvertPhilippe MicheauDidier Mammosser
Author information
JOURNAL OPEN ACCESS

2015 Volume 27 Issue 3 Pages 235-243

Details
Abstract

A three-wheel hybrid recreational vehicle was studied for the purpose of regenerative braking control. In order to optimize the amount of energy recovered from electrical braking, most of the existing literature presents optimal methods which consist in defining the optimal braking torque as a function of vehicle speed. The originality of the present study is to propose a new strategy based on the control of rear wheel slip. A simulator based on MATLAB/Simulink and validated with experimental measurements compared the two strategies and their sensitivities to variations in mass, slope and road conditions. Numerical simulations and experimental tests show that regenerative braking based on a slip controller was less affected by the majority of the parametric changes. Moreover, since the slip was limited, the longitudinal stability of the vehicle was thereby improved. It thus becomes possible to ensure optimal energy recovery and vehicle stability even in instances of parametric uncertainties.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top