Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular papers
FPGA-Based Stereo Vision System Using Gradient Feature Correspondence
Hayato HagiwaraYasufumi ToumaKenichi AsamiMochimitsu Komori
Author information
JOURNAL OPEN ACCESS

2015 Volume 27 Issue 6 Pages 681-690

Details
Abstract

This paper describes an autonomous mobile robot stereo vision system that uses gradient feature correspondence and local image feature computation on a field programmable gate array (FPGA). Among several studies on interest point detectors and descriptors for having a mobile robot navigate are the Harris operator and scale-invariant feature transform (SIFT). Most of these require heavy computation, however, and using them may burden some computers. Our purpose here is to present an interest point detector and a descriptor suitable for FPGA implementation. Results show that a detector using gradient variance inspection performs faster than SIFT or speeded-up robust features (SURF), and is more robust against illumination changes than any other method compared in this study. A descriptor with a hierarchical gradient structure has a simpler algorithm than SIFT and SURF descriptors, and the result of stereo matching achieves better performance than SIFT or SURF.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top