Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular papers
Visual Servoing for Underwater Vehicle Using Dual-Eyes Evolutionary Real-Time Pose Tracking
Myo MyintKenta YonemoriAkira YanouKhin Nwe LwinMamoru MinamiShintaro Ishiyama
Author information
JOURNAL OPEN ACCESS

2016 Volume 28 Issue 4 Pages 543-558

Details
Abstract

Recently, a number of researches related to underwater vehicle has been conducted worldwide with the huge demand in different applications. In this paper, we propose visual servoing for underwater vehicle using dual-eyes cameras. A new method of pose estimation scheme that is based on 3D model-based recognition is proposed for real-time pose tracking to be applied in Autonomous Underwater Vehicle (AUV). In this method, we use 3D marker as a passive target that is simple but enough rich of information. 1-step Genetic Algorithm (GA) is utilized in searching process of pose in term of optimization, because of its effectiveness, simplicity and promising performance of recursive evaluation, for real-time pose tracking performance. The proposed system is implemented as software implementation and Remotely Operated Vehicle (ROV) is used as a test-bed. In simulated experiment, the ROV recognizes the target, estimates the relative pose of vehicle with respect to the target and controls the vehicle to be regulated in desired pose. PID control concept is adapted for proper regulation function. Finally, the robustness of the proposed system is verified in the case when there is physical disturbance and in the case when the target object is partially occluded. Experiments are conducted in indoor pool. Experimental results show recognition accuracy and regulating performance with errors kept in centimeter level.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top