Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on New Development in Adaptive & Learning Control
Control Parameters Tuning Method of Nonlinear Model Predictive Controller Based on Quantitatively Analyzing
Tomohiro Henmi
Author information
JOURNAL OPEN ACCESS

2016 Volume 28 Issue 5 Pages 695-701

Details
Abstract

The parameter-tuning method we discuss is for an Adaptive Nonlinear Model Predictive Controller (ANMPC). The MPC is optimization-based controller and decides control input to realize system output that tracks a reference trajectory through “optimal computation.” The reference trajectory is ideal trajectory of system output to converge on a desired value, i.e. controlled system performance depends on the reference trajectory. As a MPC controller which applies to the nonlinear systems, our group has already proposed an adaptive nonlinear MPC (ANMPC) for a tracking control problem of nonlinear two-link planar manipulators. This ANMPC uses a new reference trajectory having control parameters that must be tuned based on the desired controlled system’s responses and properties. To reduce troublesome parameter tuning, we propose new parameter-tuning method for ANMPC by a quantitative analysis of the relationship between a system’s behavior and ANMPC parameters. Numerically simulating the two-link nonlinear manipulator’s tracking control under various conditions demonstrates that proposed tuning method tunes the ANMPC effectively.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top