Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on New Development in Adaptive & Learning Control
Feature Extraction for Excavator Operation Skill Using CMAC
Kazushige KoiwaiYuntao LiaoToru YamamotoTakao NanjoYoichiro YamazakiYoshiaki Fujimoto
Author information
JOURNAL OPEN ACCESS

2016 Volume 28 Issue 5 Pages 715-721

Details
Abstract

In recent years, technology that includes informatization and automation has been introduced in the construction field. On the other hand, those field still require human operation technology based on experience and skills because various environmental conditions vary from hour to hour. Seasoned technicians have made such operation technology effective at various sites and established skillful techniques. However, the decreasing number and aging of skilled technicians are a social issue, making the skill tradition and development of younger technicians difficult at operation sites that require skillful techniques. This study assumed that the operation of machines by an operator was synonymous with the control of systems by a controller; human operation techniques were considered from the viewpoint of control engineering by regarding an operator as a controller. The control system used to represent the operator consisted of a proportional-integral-derivative (PID) controller and a cerebellar model articulation controller (CMAC) that adjusted the PID gains. A CMAC which is a type of neural network learns human skills as variations in the PID gains and expresses them based on the variations. This study applies the proposed method to a hydraulic excavator swing operation to evaluate skills. Moreover, the difference in the operation skills for the excavator is clarified by obtaining operation data for skilled and younger technicians and examining the variation tendency of PID gains.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top