Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Robot Audition Technologies
Audio-Visual Beat Tracking Based on a State-Space Model for a Robot Dancer Performing with a Human Dancer
Misato OhkitaYoshiaki BandoEita NakamuraKatsutoshi ItoyamaKazuyoshi Yoshii
Author information
JOURNAL OPEN ACCESS

2017 Volume 29 Issue 1 Pages 125-136

Details
Abstract

This paper presents a real-time beat-tracking method that integrates audio and visual information in a probabilistic manner to enable a humanoid robot to dance in synchronization with music and human dancers. Most conventional music robots have focused on either music audio signals or movements of human dancers to detect and predict beat times in real time. Since a robot needs to record music audio signals with its own microphones, however, the signals are severely contaminated with loud environmental noise. To solve this problem, we propose a state-space model that encodes a pair of a tempo and a beat time in a state-space and represents how acoustic and visual features are generated from a given state. The acoustic features consist of tempo likelihoods and onset likelihoods obtained from music audio signals and the visual features are tempo likelihoods obtained from dance movements. The current tempo and the next beat time are estimated in an online manner from a history of observed features by using a particle filter. Experimental results show that the proposed multi-modal method using a depth sensor (Kinect) to extract skeleton features outperformed conventional mono-modal methods in terms of beat-tracking accuracy in a noisy and reverberant environment.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top