Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Spherical Video Stabilization by Estimating Rotation from Dense Optical Flow Fields
Sarthak PathakAlessandro MoroHiromitsu FujiiAtsushi YamashitaHajime Asama
Author information
JOURNAL OPEN ACCESS

2017 Volume 29 Issue 3 Pages 566-579

Details
Abstract

We propose a method for stabilizing spherical videos by estimating and removing the effect of camera rotation using dense optical flow fields. By derotating each frame in the video to the orientation of its previous frame in two dense approaches, we estimate the complete 3 DoF rotation of the camera and remove it to stabilize the spherical video. Following this, any chosen area on the spherical video (equivalent of a normal camera’s field of view) is unwarped to result in a ‘rotation-less virtual camera’ that can be oriented independent of the camera motion. This can help in perception of the environment and camera motion much better. In order to achieve this, we use dense optical flow, which can provide important information about camera motion in a static environment and can have several advantages over sparse feature-point based approaches. The spatial regularization property of dense optical flow provides more stable motion information as compared to tracking sparse points and negates the effect of feature point outliers. We show superior results as compared to using sparse feature points alone.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top