2017 Volume 29 Issue 4 Pages 639-648
This paper presents an autonomous navigation system. Our system is based on an accurate 3D map, which includes “geometric information” (e.g., curb, wall, street tree) and “semantic information” (e.g., sidewalk, roadway, crosswalk) extracted by environmental recognition. By using the semantic map, we can obtain the suitable area to keep away from undesired places. Furthermore, by comparing the map with real-time 3D geometric information from LIDAR, we obtain the robot position. To show the effectiveness of our system, we conduct a 3D semantic map construction experiment and driving test. The experiment results show that the proposed system enables accurate and highly reproducible localization and stable autonomous mobility.
This article cannot obtain the latest cited-by information.