Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Development of Spatially Seamless Local Communication System Based on Time Sharing Communication Strategy
Yoshikazu AraiMakoto SugawaraShintaro ImaiToshimitsu Inomata
Author information
JOURNAL OPEN ACCESS

2018 Volume 30 Issue 1 Pages 43-54

Details
Abstract

For multiple robots to achieve complex tasks while cooperating autonomously, communication among those robots is indispensable. We have developed a local communication system, LOCISS, which uses infrared light as a medium to prevent the convergence of communication by restricting the communication area. In this system, eight pairs of transmitting and receiving elements are located all around a robot, surrounding it for communication. It is also possible for each element to transmit individual information. However, because of imperfections in their directivity, communication gaps exist between elements, preventing sequences of communication. As described in this paper, SS-LOCISS makes a robot’s surroundings spatially seamless in terms of communication by rotating transmitter and receiver. First, a method is given for restoring pulses that have an incomplete shape because of transmitter and receiver rotations. Next, restrictions that are needed for all pulses transmitted to be received are considered, and characteristics of communication strategies derived from the restrictions are verified. After that, areas of transmission and reception are defined, and transmitter and receiver structures that might allow for the exchange of individual information in every area are considered. A method of signal coding is also proposed, one that may eliminate inconsistencies occurring at the dividing lines between transmission areas due to transmitter and receiver rotations. Then, SS-LOCISS prototypes demonstrate its communication accuracy and consistency on these dividing lines. Finally, we consider ways to improve its transmission rate so that SS-LOCISS may be applied to systems.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top