Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Error Analysis by Kinetics for Parallel-Wire Driven System Using Approximated Inverse Kinematics
Hitoshi KinoTakumi ImamuraNorimitsu Sakagami
Author information
JOURNAL OPEN ACCESS

2018 Volume 30 Issue 5 Pages 763-771

Details
Abstract

Parallel-wire driven systems, which use light flexible wires in place of rigid links, control the position of a target object by controlling their wire lengths. In the kinematics for such a parallel-wire driven system, when the relationship between the end-effector position and the wire lengths is investigated, a fixed point for the wire-contacting point on the winding reel in the actuator (or guide pulley) is often approximated to simplify the calculation. The approximated kinematics however could lead to a number of positioning errors in the positioning control. This study proposes a framework for evaluating these positioning control errors by using approximated inverse kinematics. In view of the system dynamics, this study analyzes the positioning control errors for the control method in the wire-length coordinates. We discuss a case study on a two degrees-of-freedom planar system using three wires.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top