Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Regular Papers
Research on Snoring Recognition Algorithms
Yongping DanYaming SongDongyun WangFenghui ZhangWei LiuXiaohui Lu
Author information
JOURNAL OPEN ACCESS

2019 Volume 31 Issue 1 Pages 70-77

Details
Abstract

A snoring recognition algorithm based on machine learning is proposed to effectively and precisely recognize snoring. To obtain a dataset, the speech endpoint detection algorithm and Mel frequency cepstrum coefficient feature extraction algorithm are applied to process speech signal samples. The dataset is classified into snoring and nonsnoring data (other speech signals) using support vector machines. Experimental results show that the algorithm recognizes snoring signals with a high accuracy rate of 97% and positively impacts subsequent research and related engineering applications.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Previous article Next article
feedback
Top