Journal of Robotics and Mechatronics
Online ISSN : 1883-8049
Print ISSN : 0915-3942
ISSN-L : 0915-3942
Special Issue on Probabilistic Robotics and SLAM
Special Issue on Probabilistic Robotics and SLAM
Keigo WatanabeShoichi MaeyamaTetsuo TomizawaRyuichi UedaMasahiro Tomono
Author information
JOURNAL OPEN ACCESS

2019 Volume 31 Issue 2 Pages 179

Details
Abstract

Intelligent mobile robots need self-localization, map generation, and the ability to explore unknown environments autonomously. Probabilistic processing can be applied to overcome the problems of movement uncertainties and measurement errors. Probabilistic robotics and simultaneous localization and mapping (SLAM) technologies are therefore strongly related, and they have been the focus of many studies. As more and more practical applications are found for intelligent mobile robots, such as for autonomous driving and cleaning, the applicability of these techniques has been increasing.

In this special issue, we provide a wide variety of very interesting papers ranging from studies and developments in applied SLAM technologies to fundamental theories for SLAM. There are five academic papers, one each on the following topics: first visit navigation, controls for following rescue clues, indoor localization using magnetic field maps, a new solution for self-localization using downhill simplex method, and object detection for long-term map management through image-based learning. In addition, in the next number, there will be a review paper by Tsukuba University’s Prof. Tsubouchi, who is famous for the Tsukuba Challenge and research related to mobile robotics.

We editors hope this special issue will help readers to develop mobile robots and use SLAM technologies and probabilistic approaches to produce successful applications.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JRM Official Site.
https://www.fujipress.jp/jrm/rb-about/
Next article
feedback
Top